
On Compositions of Transformations in 
Contrastive Self-Supervised Learning

Abstract.
In the image domain, excellent representations can be learned by inducing 
invariance to content-preserving trans-formations via noise contrastive 
learning. In this paper, we generalize contrastive learning to a wider set of 
transformations, and their compositions, for which either invariance or 
distinctiveness is sought. We show that it is not immediately obvious how 
existing methods such as SimCLR can be extended to do so. Instead, we 
introduce a number of formal requirements that all contrastive formulations 
must satisfy, and propose a practical construction which satisfies these 
requirements. In order to maximise the reach of this analysis, we express all 
components of noise contrastive formulations as the choice of certain 
generalized transformations of the data (GDTs), including data sampling. 
We then consider videos as an example of data in which a large variety of 
transformations are applicable, accounting for the extra modalities – for 
which we analyze audio and text– and the dimension of time. We find that 
being invariant to certain transformations and distinctive to others is critical 
to learning effective video representations, improving the state-of-the-art for 
multiple benchmarks by a large mar-gin, and even surpassing supervised 
pretraining.

Hierarchical sampling

Self-supervision = learning invariance to some 
transformations, variance to others.
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Code and pretrained models at: https://github.com/facebookresearch/GDT
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